Logo der Uni Bonn, Link zur Homepage der Universität Bonn Logo der AG Gravitationsbiologie, Link zur Startseite Schriftzug Gravitationsbiologie, Link zur Startseite Logo des IMBIO, Link zur IMBIO-Homepage Link zur Homepage des Bundesministeriums für Wirtschaft und Technik Link zur Homepage des Deutschen Zentrums für Luft und Raumfahrt Kopfzeile des Layouts: Gravitationsbiologie - Forschung im Weltraum und auf der Erde

+++ PUBLIKATIONEN - Mikrogravitation +++

Braun M, Hauslage J, Greuel N and Limbach C (2007) How to activate gravireceptors in higher plants. Early mechanisms of gravity sensing in Arabidopsis roots during parabolic flights. (Plant Physiol, submitted)

Limbach C, Hauslage J, Schaefer C, Braun M (2005) How to activate a plant gravireceptor - early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139: 1-11

Braun M, Hauslage J, Aleksander Czogalla, Limbach C (2004) Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids. Planta 219: 379-388

Braun M (2002b) Actomyosin-mediated statolith positioning in gravisensing plant cells studies in microgravity. J Plant Growth Regulation 21: 137-145

Braun M (2001b) Gravisensing in single-celled systems: characean rhizoids and protonemata. Adv Space Res 27: 1031-1039

Braun M, Buchen B, Sievers A (2000) Gravitropes Spitzenwachstum, Ultrastruktur und Cytoplasmaströmung der Chara-Rhizoide unter Mikrogravitationsbedingungen. In: Keller MH, Sahm PR (eds) Bilanzsymposium Forschung unter Weltraumbedingungen, 21-23. September Norderney 1998. Wissenschaftliche Projektführung RWTH Aachen, pp 666-674

Braun M, Buchen B, Sievers A (1999b) Electron microscopical analysis of gravisensing Chara rhizoids developed under microgravity conditions. The FASEB Journal 13: 113- 120

Braun M, Buchen B, Sievers A (1999a) Ultrastructure and graviresponse of Chara rhizoids in microgravity. In: Biorack on Spacehab. ESA Publication Division, Perry M (ed), ESA SP-1222, pp 243-250, Noordwijk

Sievers A, Braun M, Buchen B (1997) Chara rhizoids; Studies during long period of microgravity (Chara). Second International Microgravity Laboratory (IML-2) Final Report (Snyder RS, ed) pp. 162-163, NASA Reference Publication 1405, Marshall Spaceflight Center, Alabama

Buchen B, Braun M, Sievers A (1997) Statoliths, cytoskeletal elements and cytoplasmic streaming of Chara rhizoids under reduced gravity during TEXUS flights. In: Life sciences experiments performed on sounding rockets (1985-1994), ESA Publications Division, ESA-SP 1206, Nordwijk, pp 71-75

Braun M, Buchen B, Sievers A (1996) Fixation procedure for transmission electron microscopy of Chara rhizoids under microgravity in a Spacelab (IML-2). J Biotechnology 47: 245-251

Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Proc Sixth Eur Symp on Life Sci Res in Space. ESA SP-390, Trondheim 1996, ESA publications division ESTEC, Noordwijk, pp 5-13

Sievers A, Braun M, Hejnowicz Z (1994) Gravity and the cytoskeleton. In: Proc Fifth Eur Symp on Life Sci Res in Space, Arcachon, ESA Publications Division, ESA SP-366, Nordwijk, pp 15-17

Ackers D; Hejnowicz Z. Sievers A (1994) Variation in velocity of cytoplasmic streaming and gravity effect in characean internodal cells measured by laser-Doppler-velocimetry. Protoplasma
179: 61-71

Buchen B, Braun M, Hejnowicz Z, Sievers A (1993) Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma 172: 38-42

Buchen B, Hoson T, Kamisaka S, Masuda Y, Sievers A (1993) Development of statocyte polarity under simulated microgravity on a 3-D clinostat. Biological Sciences in Space 7: 111-115

Volkmann D, Sievers A (1992) Forschung unter reduzierter Schwerkraft. Teil II: Experimente in variierenden Gravitationsfeldern. Naturwissenschaften 79: 68-74

Volkmann D, Sievers A (1992) Forschung unter reduzierter Schwerkraft. Teil I: Grundlagen der Gravitationsbiologie. Naturwissenschaften 79: 118-124

Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M, Siebert C (1991) Oriented movement of statholiths studied in a reduced gravitational field during parabolic flights of rockets. Planta 184: 153-161

Buchen B, Hejnowicz Z, Braun M, Sievers A (1991) Cytoplasmic streaming in Chara rhizoids: Studies in a reduced gravitational field during parabolic flights of rockets. Protoplasma 165: 121-126


+++ PUBLIKATIONEN - Ground Based Studies +++

Braun M, Sievers A (2004) Actin-cytoskeletal control of gravity sensing and gravity-oriented tip growth. ASGSB-Bulletin 17 (2): 39-44

Braun M, Hauslage J, Czogalla A, Limbach C (2004) Tip-localized actin polymerization and remodelling, reflected by the localization of ADF, profilin and villin, are fundamental for gravitropic tip growth in charcean rhizoids. Planta 219: 379-388

Braun M, Hauslage J, Limbach C (2003) Actin is an essential component of gravitropic signaling pathways. Proceedings of the 16th ESA Symposium on European Rocket and Balloon Programmes and Related Research, St. Gallen, Switzerland, ESA SP-530, 259-262

Braun M (2002a) Gravity perception requires statoliths settled on specific plasma-membrane areas in characean rhizoids and protonemata. Protoplasma 219: 150-159

Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme, K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. The EMBO Journal 20: 2779-2788

Braun M (2001a) Association of spectrin-like proteins with the actin-organized aggregate of endoplasmic reticulum in the Spitzenkörper of gravitropically tip-growing plant cells. Plant Physiol 125: 1611-1619

Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-enriched F-actin meshworks accumulated within outgrowing bulges. Developmental Biology 227: 618 - 632

Vitha S, Baluška F, Braun M, Šamaj J, Volkmann D, Barlow P W (2000) Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: Steedman´s wax and freeze-shattering reveal that aldehydes do not destroy F-actin. Histochem J 32: 457 - 466

Šamaj J, Braun M, Baluška F, Ensikat, HJ, Tsumuraya Y, Volkmann D (1999) Arabinogalactan-protein epitopes at the surface of maize roots: the LM2 epitope is specific to root hairs. Plant Cell Physiol 40 (8): 874-883

Braun M, Baluška F, von Witsch M, Menzel D (1999d) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate (PIP2) in growing and maturing root hairs. Planta 209: 435-443

Braun M, Richter P (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209: 414-423

Braun M, Wasteneys GO (1998) Reorganization of the actin and microtubule cytoskeleton throughout blue-light-induced differentiation of characean protonemata into multicellular thalli. Protoplasma 202: 38-53

Braun M, Wasteneys GO (1998) Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205: 39-50

Hodick D, Sievers A (1998) Hypergravity can reduce but not enhance the gravitropic response of Chara globularis protonemata. Protoplasma 204: 145-154

Hodick D, Buchen B, Sievers A (1998) Statolith positioning by microfilaments in Chara rhizoids and protonemata. Adv Space Res 17: 47-53

Cai W, Braun M, Sievers A (1997) Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Acta Bot Exp Sinica 30 (2): 147-155

Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as simulator of weightlessness. Planta 203 Suppl: S187-S197

Braun M (1996b) Immunolocalization of myosin in rhizoids of Chara globularis Thuill. Protoplasma 191: 1-8

Braun M (1996a) Anomalous gravitropic response of Chara rhizoids during enhanced accelerations. Planta 199: 443-450

---- (1996) Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions. Adv Space Res 17: 47-53

Braun M, Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63: 289-298

Braun M, Sievers A (1993) Centrifugation causes adaptation of microfilaments: Studies on the transport of statoliths in gravity sensing Chara rhizoids. Protoplasma 174: 50-61

Hoson T, Kamisaka S, Buchen B, Sievers A, Yamashita M, Masuda Y (1993) Automorphogenesis of plant seedlings under simulated microgravity on a 3-D clinostat. Biological Sciences in Space 7: 107-110

Sievers A (1992) Graviperception and the cytoskeleton. J Exp Botany 43, Suppl: 75

Sievers A, Kramer-Fischer M, Braun M, Buchen B (1991) The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependent. Botanica Acta 104: 103-109

Bartnik E, Sievers A (1988) In-vivo observations of a spherical aggregate of endoplasmatic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176: 1-9

Bartnik E (1984) Die Rolle des endoplasmatischen Retikulums beim Spitzenwachstum von Chara-Rhizoiden. Diplomarbeit, Botanisches Institut, Universität Bonn

Hejnowicz Z, Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids Protoplasma 108: 117-137


+++ PUBLIKATIONEN - Reviews +++

Greuel N, Hauslage J and Braun M (2007) Early mechanisms of gravity sensing in plants. Proceedings of the 18th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Visby, Sweden, ESA SP (in press)

Braun M (2007) Primary reactions of gravity sensing in plants. In: Brinckmann E, (eds.). Biology in Space and Life on Ground. Wiley Verlag, Weinheim, (in press)

Braun M, Hemmersbach R (2007) Single-cell gravitropism and gravitaxis. In: Masson P, Gilroy S (eds) Plant tropisms. (in press)

Braun M, Foissner I, Lühring H, Schubert H, Thiel G (2007) Characean algae: still a valid model system to examine fundamental principles in plants. Progress in Botany 68: 193-220

Hemmersbach R, Braun M (2006) Gravity-sensing and gravity-related signalling pathways in unicellular model systems of protists and plants. Signal Transduction 6: 432-442

Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae - unicellular model systems for research on polarized growth and plant gravity sensing. Protoplasma 229: 133-142

Braun M, Limbach C (2005) Actin-based gravity-sensing mechanisms in unicellular plant model systems. Proceedings of the 17th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Sandefjord, Norway, ESA SP 590, 41-45

Braun M, Limbach C (2004) Gravisensing in single-celled systems - update on characean rhizoids and protonemata. Advances in Space Research 36: 1156-1161

Sievers A, Braun M, Monshausen GB (2002) The root cap: structure and function. In: Waisel Y, Eshel A, Kafkaki U (eds) Plant Roots - The Hidden Half. 3rd Edn, Marcel Dekker, New York, pp 33-47

Braun M, Sievers A (2000) Plant cells on earth and in space. Korean J Biol Sci 4: 201-214

Braun M, Wasteneys GO (2000) Actin in characean rhizoids and protonemata. Tip growth, gravity sensing and photomorphogenesis. In: Staiger CJ, Baluska F, Volkmann P, Barlow P (eds) Actin: a dynamic framework for multiple plant cell functions. Dordrecht, The Netherlands, Kluwer Academic Publishers, pp 237-258

Braun M (1997) Gravitropism in tip-growing cells. Planta 203: S11-S19

Sievers A, Buchen B, Scott TK (1997) Plant Biology in Space. Planta 203, Suppl

Sievers A, Braun M (1996) Root cap: structure and function. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots - the hidden half. 2nd edn, Marcel Dekker, New York, pp 31-49

© Institut für Molekulare Physiologie und Biotechnologie der Pflanzen IMBIO, AG Gravitationbiologie  ( © Fabian A. Paul )