Logo der Uni Bonn, Link zur Homepage der Universität Bonn Logo der AG Gravitationsbiologie, Link zur Startseite Schriftzug Gravitationsbiologie, Link zur Startseite Logo des IMBIO, Link zur IMBIO-Homepage Link zur Homepage des Bundesministeriums für Wirtschaft und Technik Link zur Homepage des Deutschen Zentrums für Luft und Raumfahrt Kopfzeile des Layouts: Gravitationsbiologie - Forschung im Weltraum und auf der Erde

+++ PUBLIKATIONEN - Ground Based Studies +++

Limbach C, Staehelin, LA, Sievers A, Braun M (2008) A vacuolar reticulum and a characteristic apical distribution of different vesicle types analyzed in tip-growing Chara rhizoids by electron tomography. Planta 227: 1101-1114

Braun M, Sievers A (2004) Actin-cytoskeletal control of gravity sensing and gravity-oriented tip growth. ASGSB-Bulletin 17 (2): 39-44

Braun M, Hauslage J, Czogalla A, Limbach C (2004) Tip-localized actin polymerization and remodelling, reflected by the localization of ADF, profilin and villin, are fundamental for gravitropic tip growth in charcean rhizoids. Planta 219: 379-388

Braun M, Hauslage J, Limbach C (2003) Actin is an essential component of gravitropic signaling pathways. Proceedings of the 16th ESA Symposium on European Rocket and Balloon Programmes and Related Research, St. Gallen, Switzerland, ESA SP-530, 259-262

Braun M (2002a) Gravity perception requires statoliths settled on specific plasma-membrane areas in characean rhizoids and protonemata. Protoplasma 219: 150-159

Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Gilroy S, Palme, K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. The EMBO Journal 20: 2779-2788

Braun M (2001a) Association of spectrin-like proteins with the actin-organized aggregate of endoplasmic reticulum in the Spitzenkörper of gravitropically tip-growing plant cells. Plant Physiol 125: 1611-1619

Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-enriched F-actin meshworks accumulated within outgrowing bulges. Developmental Biology 227: 618 - 632

Vitha S, Baluška F, Braun M, Šamaj J, Volkmann D, Barlow P W (2000) Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: Steedman´s wax and freeze-shattering reveal that aldehydes do not destroy F-actin. Histochem J 32: 457 - 466

Šamaj J, Braun M, Baluška F, Ensikat, HJ, Tsumuraya Y, Volkmann D (1999) Arabinogalactan-protein epitopes at the surface of maize roots: the LM2 epitope is specific to root hairs. Plant Cell Physiol 40 (8): 874-883

Braun M, Baluška F, von Witsch M, Menzel D (1999d) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate (PIP2) in growing and maturing root hairs. Planta 209: 435-443

Braun M, Richter P (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209: 414-423

Braun M, Wasteneys GO (1998) Reorganization of the actin and microtubule cytoskeleton throughout blue-light-induced differentiation of characean protonemata into multicellular thalli. Protoplasma 202: 38-53

Braun M, Wasteneys GO (1998) Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205: 39-50

Hodick D, Sievers A (1998) Hypergravity can reduce but not enhance the gravitropic response of Chara globularis protonemata. Protoplasma 204: 145-154

Hodick D, Buchen B, Sievers A (1998) Statolith positioning by microfilaments in Chara rhizoids and protonemata. Adv Space Res 17: 47-53

Cai W, Braun M, Sievers A (1997) Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Acta Bot Exp Sinica 30 (2): 147-155

Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as simulator of weightlessness. Planta 203 Suppl: S187-S197

Braun M (1996b) Immunolocalization of myosin in rhizoids of Chara globularis Thuill. Protoplasma 191: 1-8

Braun M (1996a) Anomalous gravitropic response of Chara rhizoids during enhanced accelerations. Planta 199: 443-450

---- (1996) Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions. Adv Space Res 17: 47-53

Braun M, Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63: 289-298

Braun M, Sievers A (1993) Centrifugation causes adaptation of microfilaments: Studies on the transport of statoliths in gravity sensing Chara rhizoids. Protoplasma 174: 50-61

Hoson T, Kamisaka S, Buchen B, Sievers A, Yamashita M, Masuda Y (1993) Automorphogenesis of plant seedlings under simulated microgravity on a 3-D clinostat. Biological Sciences in Space 7: 107-110

Sievers A (1992) Graviperception and the cytoskeleton. J Exp Botany 43, Suppl: 75

Sievers A, Kramer-Fischer M, Braun M, Buchen B (1991) The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependent. Botanica Acta 104: 103-109

Bartnik E, Sievers A (1988) In-vivo observations of a spherical aggregate of endoplasmatic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176: 1-9

Bartnik E (1984) Die Rolle des endoplasmatischen Retikulums beim Spitzenwachstum von Chara-Rhizoiden. Diplomarbeit, Botanisches Institut, Universität Bonn

Hejnowicz Z, Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids Protoplasma 108: 117-137

© Institut für Molekulare Physiologie und Biotechnologie der Pflanzen IMBIO, AG Gravitationbiologie